
Approximating MMS and (symmetric) APS

under Cardinality Constraints: Goods and Bads

Arjun Aggarwal, Kyra Gunluk and Ruta Mehta

July 2023

Abstract

1 Introduction

Discrete fair division is a fundamental problem within the social choice theory,
where a set of m indivisible items needs to be allocated fairly among n agents
where preferences of agent i is defined by a valuation function Vi : 2

→R. The
items may be goods (positively valued) or chores (negatively valued). Among
many fairness notions, Maximin Share (MMS) and Any Price Share (APS) are
two of the most popular notions. Both of these have been studied extensively
under additive valuations and for goods. In this paper, we study MMS and
symmetric-APS for allocating both goods and chores to agents with cardinality
constraints.

Both MMS and APS are share based fairness notions, where each agent is
entitled to a bundle worth their fair share. Under MMS, this fair share of an
agent is defined as the maximum value she can guarantee herself under the
classical cut-and-choose mechanism when she is the cutter; she partitions the
item set into n bundles and gets to pick last. Therefore, clearly, she will partition
such that the value of the minimum valued bundle is maximized. If Π() denotes
the set of all allocations of among the n agents, and (A1 . . . , An) denotes any
allocation into n bundles, then the MMS value of agent i is defined as,

MMSi = max
(A1,...,An)∈Π()

min
j∈[n]

Vi(Aj)

An MMS allocation is one where every agent i gets a bundle worth at least
MMSi. [feige-aps] introduced a stronger notion called Any Price Share (APS)
via a pricing mechanism.1 That is, if denotes the simplex of all price vectors

1We note that APS was defined with respect to asymmetric agents, where agent i has
budget/weight of bi > 0 while

∑
i bi = 1, in this paper we focus on symmetric-APS.

1

for the m goods where the sum of all prices is 1 and all prices are non-negative,
hence = {(p1 . . . , pm) |

∑m
j=1 pj = 1, pj ≥ 0 ∀j}, then APS is given by,

APSi = min
(p1,...,pm)∈

max
S⊆M :

∑
j∈S pj≤1/n

Vi(S)

[feige-aps] showed that APSi ≥ MMSi for all agent i as far as the valuation
functions are monotone.

Allocations achieving MMS and APS shares may not exist even under ad-
ditive valuations [ProcacciaW14, FeigeST21]. Therefore, the focus has been
on finding approximate solutions, where in an α-APS (MMS) allocation, every
agent receives a bundle worth at least α times their APS (MMS) value. This
problem has been studied extensively for additive valuations and when con-
tains only goods (see [AmanatidisABFLMVW22survey] for a survey and
pointers), that is, Vi(S) =

∑
j∈S vij for any S ⊂, Vi(S), and vij ≥ 0, for all

(i, j).
We consider agents with cardinality constraints. That is, each agent i has

an additive valuation function Vi as well as a cardinality constraint of ki > 0,
with the understanding that if is a set of goods, then agent i wants no more
than ki items, and if is a set of chores then agent i needs to be allocated at
least ki items. Note that such a valuation function generalizes additive while
is contained in submodular and supermodular functions for goods and chores,
respectively. The latter are not as well-studied. The best bound known for
goods under submodular functions are 10/27 and 1/3 for MMS and APS, while
nothing is known for the chores under supermodular functions.

[empty citation] studied MMS under cardinality constraints, but assumed
homogeneous cardinalities, i.e., ki = k, ∀i. They gave algorithms to find 2/3-
MMS and 3/2-MMS respectively for goods and chores. For more complex valua-
tion function. where is partitioned into sets 1, . . . ,d and each set has a separate
cardinality constraint namely kl for set l, then extended the goods algorithm to
find 1/2-MMS allocations.

We extend the above results on two fronts. First, we allow agents to have
heterogeneous cardinality constraints, and second, we extend the results to the
stronger notion of APS.

1. 1/2-factor for MMS and APS for goods

2. 3/2-factor for MMS and APS for chores

3. 1/2-MMS for more complex valuation function and ordered cardinality
constraints. Do we have 1/2-APS here?

On the technical side we bring several new insights that may be of indepen-
dent interest:

• Sliding-window with Breaks.

• bag-filling until last shout

2

• reverse bag-filling

• An analysis to show that round-robin is powerful and universal: it is
enough to handle both MMS and APS, for both goods and chores to give
weaker guarantees of 1/2 and 2 factors respectively.

2 Preliminaries for Goods

An instance of the fair allocation problem under unequal cardinality constraints
is given by I = ⟨N,M, V,K⟩, where N = {1, 2, . . . n} is the set of agents, M =
{1, 2, . . .m} is the set of goods, V = ⟨v1, v2, . . . vn⟩ is the collection of the agents’
valuation functions vi : 2

M → R+, and K = ⟨k1, k2, . . . kn⟩ is the collection of
cardinality thresholds. Without loss of generality, we assume that the agents are
arranged in non-decreasing order of thresholds. Hence, k1 ≤ k2 · · · ≤ kn. We
assume that the valuation functions are additive i.e. vi(S) =

∑
g∈S vi(g) for any

subset S ⊆ M . An allocation A = (A1, A2, . . . An) ∈ Πn(M) is an n-partition
of M , with Ai being the bundle received by agent i.

Let Topji (S) denote the set of max (|S| , j) most valuable goods for agent i

in S. If the instance is ordered, then Topji is the same for every agent, hence
we omit the subscript. For any agent i, we define the final valuation function
fi : 2

M → R+ as follows:

fi(S) :=
∑

g∈Top
ki
i (S)

vi(g)

Under the final valuation function, agent i can have value for at most ki items
in a set. Thus, these final valuation functions have the cardinality constraints
”built” into them. We use these functions to define the maximin share of each
agent.

Definition 2.1 (Maximin Share). Let I = ⟨N,M, V,K⟩ be an instance of the
fair allocation problem for goods under unequal cardinality constraints. For an
agent i, let fi be as defined above. The maximin share of i is defined as

MMSi := max
A∈Πn(M)

min
Aj∈A

fi(Aj)

Definition 2.2 (Any Price Share). Let I = ⟨N,M, V,K,B⟩ be an instance
of the fair allocation problem for goods under unequal cardinality constraints,
where B = ⟨b1, b2, . . . bn⟩ is the set of agents’ entitlements with every bi ≥ 0,
and

∑n
i=1 bi = 1. For an agent i, let fi be as defined above. The any price share

of i is defined as

APSi := min
(p1,p2,...pm)∈P

max
S⊆M

fi(S) |
∑
j∈S

pj ≤ bi


Where P = {(p1, p2, ..., pm) | pj ≥ 0 ∀j ∈ M,

∑
j∈M pj = 1} is the set of

item-price vectors that sum to 1.

3

Definition 2.3 (Any Price Share, dual definition). Let I = ⟨N,M, V,K,B⟩ be
an instance of the fair allocation problem for goods under unequal cardinality
constraints, where B = ⟨b1, b2, . . . bn⟩ is the set of agents’ entitlements with
every bi ≥ 0, and

∑n
i=1 bi = 1. The any price share of i is defined as

APSi := max z

Where z is subject to the following constraints:
1.

∑
T⊆M λT = 1

2. λT ≥ 0 ∀T ⊆M
3. λT = 0 ∀T ⊆M s.t. fi(T) < z
4.

∑
T⊆M :j∈T λT ≤ bi ∀j ∈M

Lemma 2.1 (One-Good Reduction). Let I = ⟨N,M, V,K,B⟩ be an ordered
instance of fair division under ordered heterogeneous cardinality constraints,
and with equal entitlements (bj = 1

n ∀j ∈ M). If a single item is given to an
agent, and this item and agent are then removed from the instance, all remaining
agents’ APS remain the same or are increased.

Proof. We can prove this by showing that for any agent i, the optimal z∗ =
APSi is still a solution to the APS′

i for the new instance, and thus the maximal
z must be greater or equal to this feasible value z∗. We will construct the new
feasible solution from the old optimal solution as follows:
Given the entitlements are equal, bi =

1
n ∀i in the original instance, and after

the removal of item j∗ and agent i∗, the entitlements will be b′i = 1
n−1 ∀i.

Additionally, in the new instance, M ′ = M \ {j∗}, so every T ′ ⊆ M ′ is also a
subset of M, and the remaining T ⊆M,T ̸⊆M ′ are the exact sets T ′ ∪ j∗.
Let λ∗

T be the value of λT in the optimal solution for the original problem for

each T ⊆ M . Let λ′
T =

λ∗
T

S where S =
∑

K⊆M :j∗ /∈K λ∗
K =

∑
K⊆M ′ λ∗

K , and

z′ = z∗. Note that S is strictly positive (specifically greater than n−1
n as proven

later) so this fraction is valid.

The first constraint holds true, since
∑

T⊆M ′ λ′
T =

∑
T⊆M ′

λ∗
T

S =
∑

T⊆M′ λ
∗
T

S = 1.
The second constraint holds true because the same constraint in the original LP
implies that all λ∗

T ≥ 0, and so S =
∑

K⊆M :j /∈K λ∗
K ≥ 0, thus it follows that

λ′
T =

λ∗
T

S ≥ 0.
The third constraint remains true because if vi(T

′) < z in the new LP, then
in the original LP, vi(T) < z for T = T ′, and by the third constraint in the

original LP, this implies that λ∗
T = 0. Thus, λ′

T =
λ∗
T

S = 0, satisfying the third
constraint of the new LP.
The fourth constraint also holds. The original LP states that

∑
T⊆M :j∈T λ∗

T ≤ 1
n

∀j ∈ M , thus, for j∗ ∈ M ,
∑

T⊆M :j∗∈T λ∗
T ≤ 1

n , and by the first constraint in
the original LP, 1 =

∑
T⊆M λ∗

T =
∑

T⊆M :j∗∈T λ∗
T +

∑
T⊆M :j∗ /∈T λ∗

T , so S =∑
T⊆M :j∗ /∈T λ∗

T = 1−
∑

T⊆M :j∗∈T λ∗
T ≥ 1− 1

n = n−1
n . Thus,

∑
T⊆M ′:j∈T λ′

T =∑
T⊆M ′:j∈T

λ∗
T

S =
∑

T⊆M′:j∈T λ∗
T

§ ≤ 1/n
n−1/n = 1

n
n

n−1 = 1
n−1 , thus it holds that∑

T :j∈T λ′
T ≤ 1

n−1 = b′i ∀j ∈M ′.

4

Finally we can see that (z′, λ′
T ∀T ∈ M ′) is a feasible solution to the new LP,

thus the optimal solution cannot have a smaller z than the original z∗, as we
are maximizing, so the APS cannot have decreased.

Lemma 2.2. Let I = ⟨N,M, V,K,B⟩ be an ordered instance of fair division
under ordered heterogeneous cardinality constraints, and with equal entitle-
ments (bj = 1

n ∀j ∈ M). For any price vector (p1, p2, . . . , pm) satisfying pj ≥ 0

∀j ∈ M,pj = 0 ∀j ∈ M \ Topnki
i (M),

∑
j∈M pj = 1, the highest valued afford-

able bundle consists only of items from the top nki items.

argmax
S⊆M

fi(S) |
∑
j∈S

pj ≤ bi

 ⊆ Topnki
i (M)

Proof. To prove this claim we will use induction on the number of agents, n.
When n = 1, we can see that bi = 1

n = 1, and since
∑

j∈M pj = 1, when

S = Topki
i (M),

∑
j∈S pj ≤ 1 = bi, so fi(S) = vi(Top

ki
i (M)). Since S is a

bundle of the ki best items, this is certainly the optimal bundle, and indeed
consists of only Topnki

i (M) items.
Assuming the claim holds for all 1 ≤ n′ < n, we now prove that the claim also
holds for n.
Assume towards contradiction that this is false, and so the optimal bundle of
affordable items, S∗, consist of at least one item not in the top nki items. Note
that we assume |S∗| ≤ ki, as we can only value the top ki items of any bundle
S ⊆ M , and so excluding all items past the top ki items does not change
objective value. Call the bundle of items in S∗ that are in Topnki

i (M) ”S∗
1”

and call the remaining items of S that are not in Topnki
i (M) ”S∗

2”, so we see
that S∗ = S∗

1 ∪ S∗
2 and S∗

1 ∩ S∗
2 = ∅. Let (p1, p2, . . . , pm) be a price vector that

results in such an S. Construct a price vector for an instance of size n − 1 as
follows: Let the items M ′ = M \ B where B is a set of ki items in the top nki
items of M whose prices sum to at least 1

n . Such a set B is guaranteed to exist

because if all n-partitions (X1, X2, . . . , Xn) of Topnki
i (M) with |X1| = |X2| =

· · · = |Xn| = ki had pricing such that
∑

j∈Xi
pj <

1
n , then it would be true that∑

j∈Top
nki
i (M)

pj < 1, however since pj = 0 ∀j ∈ M \ Topnki
i (M),

∑
j∈M pj =∑

j∈Top
nki
i (M)

pj = 1, which is a contradiction. The remaining prices for items

in M ′ will be less than n−1
n since

∑
j∈Top

nki
i (M)

pj = 1 and
∑

j∈B pj ≥ 1
n

implies
∑

j∈Top
nki
i (M)\B pj =

∑
j∈Top

nki
i (M ′)

pj ≤ 1 − 1
n = n−1

n . Let the new

pricing p′j = pj ∗ n
n−1 for all j ∈M ′, so now

∑
j∈M ′ pj ≤ 1. Since S∗ contained

items past the top nki items, |M | > nki, and so |M ′| = |M | − ki > (n − 1)ki,
and since |S∗| ≤ ki, and n ≥ 2, (n − 1) ≥ 1, so |M ′| > (n − 1)ki ≥ |S∗|.
Thus, it must be true that there is an item in M ′ that is not in S∗. If the
only such items were not in the top (n − 1)ki items, then it would have to
be true that S∗ is exactly the top (n − 1)ki items of M ′, in which case S∗

would have had to be in the top nki items of M which we know to be false,

so there must be an item in Top
(n−1)ki

i (M ′) that is not in S∗. Choose one

5

such item, q ∈ Top
(n−1)ki

i (M ′) \ S∗, and set p′q = p′q + 1 −
∑

j∈M ′ pj . Now,

we have
∑

j∈M p′j = 1. For all j ∈ M ′ \ Top(n−1)ki

i (M ′), it must also be true

that j ∈ M \ Topnki
i (M) since M ′ is exactly M with ki top items removed.

Thus, it must be true that pj = 0, and so p′j = 0 ∗ n
n−1 = 0 because the only

new price otherwise adjusted is q, which is not in M ′ \ Top(n−1)ki

i (M ′). Thus
we have a price assignment (p′1, p

′
2, . . . , p

′
m′) such that p′j ≥ 0 ∀j ∈ M ′, p′j = 0

∀j ∈ M ′ \ Top(n−1)ki

i (M ′),
∑

j∈M ′ p′j = 1. Any bundle of items S ⊆ M ′ \ {q}
such that

∑
j∈S p′j ≤ 1

n−1 satisfies
∑

j∈S pj ∗ n
n−1 ≤

1
n−1 or

∑
j∈S pj∗ ≤ 1

n .
A bundle S that contains q may no longer affordable. Thus, a bundle that is
affordable in the n−1 case was also affordable in the n case. Since the valuation
of the bundles remains the same, and every bundle S ⊆M ′ is also a subset ofM ,
the maximally valued affordable bundle in the n case (which is still contained
in M ′) must also be the maximally valued affordable bundle in the n− 1 case.
Finally we can see that this implies the solution to the n−1 case contains items
from outside the top (n−1)ki items, which contradicts our inductive hypothesis.
Thus, our initial assumption must be false, and the claim must also hold for n.

Lemma 2.3. Let I = ⟨N,M, V,K,B⟩ be an ordered instance of fair division un-
der ordered heterogeneous cardinality constraints, and with equal entitlements
(bj =

1
n ∀j ∈M). For any agent i, the APS value of the agent is at most their

proportional share.

APSi ≤
1

n
vi(Top

nki
i (M))

Proof. Consider the price vector pj =
vij

vi(Top
nki
i (M))

for all items j in the top

nki items, and pj = 0 for all other j. This satisfies price constraints, pj ≥ 0, and∑
j∈M pj =

∑
j∈Top

nki
i (M)

vij

vi(Top
nki
i (M))

=

∑
j∈Top

nki
i

(M)
vij

vi(Top
nki
i (M))

=
vi(Top

nki
i (M))

vi(Top
nki
i (M))

= 1.

Any S ⊆ M that satisfies
∑
j∈S

pj ≤ bi, or
∑

j∈S∩Top
nki
i (M)

vij

vi(Top
nki
i (M))

≤ 1
n ,

implies that vi(S ∩ Topnki
i (M)) ≤ 1

n
vi(Top

nki
i (M)). By

textbfLemma 2.2, it is true that using this price vector, the optimal affordable

bundle contains items only from Topnki
i (M). Thus, for S∗ = argmaxS⊆M

{
vi(S) |

∑
j∈S pj ≤ bi

}
,

S∗ ⊆ Topnki
i (M) so S∗∩Topnki

i (M) = S∗ so it is true that vi(S
∗) ≤ 1

n
vi(Top

nki
i (M)),

or, maxS⊆M

{
vi(S) |

∑
j∈S pj ≤ bi

}
≤ 1

n
vi(Top

nki
i (M)). Since APS takes the

minimum over all price vectors, the APS value of agent i must be at most the
proportional share.

6

3 1/2 Using Round-Robin

The Round-Robin algorithm consists of agents in a pre-determined order taking
turns picking an item until all items are gone. In this particular algorithm, the
order of agents will be such that if agent i comes before j then ki ≤ kj . First we
will re-scale every agents valuations such that their value of the top nki items is
equal to n, and consequently then MMS and APS are both at most 1. We will
then perform the One-Good Reduction, where every item valued greater than
1
2 by at least one agent is given to one such agent, and the agent is satisfied
given at least 1

2 −MMS and 1
2 − APS, so they are resolved. The MMS and

APS of remaining agents will never decrease in this step, by Lemma 2.1. Once
a good and an agent are removed, we will rescale the valuations as before. We
will the repeat the One-Good Reduction until all items that remain are valued
less than 1

2 by all remaining agents, or all agents are resolved, in which case we
can randomly distribute remaining items, and all agents will receive even more
value. Finally, Each agent will chose the best remaining item at their turn, so
the first agent will end with items 1, n + 1, 2n + 1, ..., kin + 1, ... as sorted by
best to worst. Overall, the assignments will look like the following:
agent 1: 1 n+1 ... k1n+1 (k1+1)n+1 ...
agent 2: 2 n+2 ... k1n+2 ... k2n+2 (k2+1)n+2 ...

.

.

.
agent n: n 2n ... (ki+1)n (ki+2)n-1 ... ∥M∥

Some agents with smaller cardinalities may have more items than they can val-
uate since everyone gets the same number of items, but using the final valuation
function fi we will show that this is not a problem.
From the perspective of each agent i looking at the top ki items given to the
first agent, we can see that it is valued at least 1: Each agent values the top nki
items at n, and the ki items given to the first agent are better than that given
to the second which is better than the third and so on. Formally, if we define Ai

to be the assigned items to agent i, we see that vi(Top
ki
i (Ax)) ≥ vi(Top

ki
i (Ay))

∀ agents x < y. Thus through contradiction if vi(Top
ki
i (A1)) < 1 then all

vi(Top
ki
i (Aj)) < 1, so the total nki items would valuate to less than n, which is

false, so it must be true that vi(Top
ki
i (A1)) ≥ 1.

Now, for every agent i consider the value they are given: items i, n+ i, 2n+ i, ...
and the value they have lost: all other items in the top nki items. Each item
that comes before i, which there are less than n of, is upper bounded by 1

2 , each
item that comes after i is upper bounded by vi(i), each item that comes after
n + i is upper bounded by vi(n + i), and so on. There are n-1 items strictly
between jn + i and (j+1)n + i, so for each item jn + i given to agent i, they
lost n− 1 items of value at most jn+ i.
Thus the total value taken by i is vi(i)+vi(n+i)+vi(2n+i)+... =

∑ki−1
j=0 vi(jn+i)

And the total value lost by i is at most 1
2n+(n−1)vi(i)+(n−1)vi(n+ i)+ ... =

n
2 + (n − 1)

∑ki−1
j=0 vi(jn + i) since there are at most n items before i that are

7

upper bounded by 1
2 and n−1 items that are upper bounded by jn+ i for every

item i, n+ 1, 2n+ i, ..., kin+ i.
Thus, the total value of these top nki items is: Value taken + Value lost
≤

∑ki−1
j=0 vi(jn+ i)+ n

2 +(n−1)
∑ki−1

j=0 vi(jn+ i) = n
2 +n

∑ki−1
j=0 vi(jn+ i), and

since the top nki items are valued at n, we see that n ≤ n
2 +n

∑ki−1
j=0 vi(jn+ i),

or n
2 ≤ n

∑ki−1
j=0 vi(jn + i), or 1

2 ≤
∑ki−1

j=0 vi(jn + i) = value taken by i. Thus

every agent i takes value at least 1
2 , and since MMS and APS are each at most

1, a bundle of value 1
2 is at least 1

2 −MMS and at least 1
2 −APS.

4 1
2 Using Bag-Filling

The first step of the algorithm is to re-scale every agents valuations such that
their value of the top nki items is equal to n, and consequently then MMS and
APS are both at most 1. The next step is a One-Good Reduction, which we
will perform in the same way as at the start of the Round-Robin algorithm, and
afterwards we will have all items valued less than 1

2 by all agents. Now we will
sort agents such that if agent i comes before j then ki ≤ kj .
In this algorithm, each agent will only have ”view” of their top nki items, so
they will never be given the opportunity to value a bag outside that range. In
addition, any bag taken will have at most ki items from the top nki items for
every i, to ensure the range of view of each agent decreases by ki every itera-
tion, so the range always equals the number of remaining agents times ki. The
bag-filling algorithm begins with n many empty bags labeled B1 through Bn.
We then iterate from j = n to 1 to fill each bag. In each iteration, the bag
Bj will receive the kmax least valuable remaining goods in the bag. If an agent
values this bag at least 1/2, the bag and the agent can be resolved. Otherwise,
we enter a while loop that shifts the window of included items in the bag by
swapping the worst item in the bag with the worst item not yet considered.
This will continue until a barrier of nki is hit for some i, in which case |Bj | − ki
items will be left behind at the barrier, while only ki of the items will continue
shifting. This while loop terminates until some agent values the bag at least
1/2, which we prove is guaranteed eventually. Then the bag will be given to
such an agent, both the agent and items will be removed from the instance, and
the next iteration will begin filling the next bag. At the end of the algorithm,
if there are any remaining items, they can be distributed randomly, as doing so
can only increase the agents’ assigned values.
Let gmin(S) denote the least valuable good in S (same for all agents since we
assume the instance is ordered) for any S ⊆M

8

Algorithm 1 (1/2)-MMS Algorithm for Unequal Cardinality Constraints

Input: An ordered instance I = ⟨N,M, V,K⟩ with MMSi = 1 and vi(j) < 1/2
∀i ∈ N ∀j ∈M

1: A = (∅, ∅, . . . , ∅)
2: B1 = {}, B2 = {} . . . Bn = {}
3: for j = n to 1 do
4: Add the kmax least valuable items to Bj

5: while fi(B
′
j) < 1/2 ∀i ∈ N do

6: updatebag(I, B′
j , j)

7: end while
8: Find smallest i ∈ N with fi(Bj) ≥ 1/2

9: Ai = Topki(Bj), M = M \ Topki(Bj), N = N \ {i}, K = K \ {ki}
10: end for
11: If there are any remaining items, distribute them arbitrarily.

1: function updatebag(I, Bj , j)

2: Let i := min{t ∈ N : (Topjkt(M)) ∩Bj ̸= ϕ}
3: if |(Topjki(M)) ∩Bj | < ki then

4: Let i′ := min{t ∈ N : |(Topjkt(M)) ∩Bj | = kt}
5: Swap gmin((Top

jki(M)) \Bj) with gmin((Top
jki′ (M)) ∩Bj)

6: else
7: Swap gmin((Top

jki(M)) \Bj) with gmin((Top
jki(M)) ∩Bj)

8: end if
9: end function

Proofs:
To prove that this algorithm finds a 1

2 −MMS and 1
2 −APS allocation of goods

to agents in polynomial time we must prove that (i) in every iteration a bag is
assigned of value at least 1

2 and (ii) the algorithm runs in polynomial time.
To prove (i), we need to ensure that at each iteration j of the for-loop, the while
loop in lines 5-7 eventually terminates, or more specifically, updatebag() even-
tually produces a bag Bj such that some agent i’ values it at least 1/2. To prove
this, we can show that throughout the while-loop, the invariant vi(Top

jki(M)) ≥
j holds for every agent i. This will prove that when j = 1, vi(Top

ki(M)) ≥ 1,
so for any remaining agent i, there is a bag of size at most ki and value at least
1, and updatebag() will find such a bag by shifting the window in range jki
up to the top ki items, through the swapping in line 7.
We know this claim holds for j = n, since we re-scaled the values such that
vi(Top

nki(M)) = n
Now assume that at iteration j, vi(Top

jki(M)) ≥ j for all agents i. We want
to show that for the following iteration, vi(Top

(j−1)ki(M \ Bj)) ≥ j − 1 for all
remaining agents i.
Case 1: Bj∩ Topjki(M) = ϕ
In this case, if the last ki items are less than 1, then certainly the remaining

9

top (j − 1)k + i will be valued greater than j − 1. If the items are greater than
1, then since every other of the j-1 chunks of size ki has better value, they will
also have value greater than 1, and will all add up to have value greater than
j-1.
Case 2: Bj∩ Topjki(M) ̸= ϕ
By the else of the conditional on line 4 of updatebag(), there will never be a
chunk of size greater than ki taken from the top jki items.
If exactly ki items are taken, then vi(Top

(j−1)ki(M \ Bj)) = vi(Top
jki(M) \

Bj) = vi(Top
jki(M)) − vi(Bj) by additivity of valuation. Since at iteration

j the while loop terminates the first time an agent (or agents) values the bag
≥ 1/2, then in the iteration of the while loop one previous to termination, the
bag currently is valued < 1/2 for all agents, so vi(Bj) < 1/2. During the last
while loop iteration, updatebag() only adds or swaps one good, which must be
valued less than 1/2, so the bags value can increase by at most 1/2. Thus, after
this iteration, vi(Bj) < 1/2 + 1/2 = 1. Thus, vi(Top

jki(M))− vi(Bj) ≥ j + 1.
If the assignment in iteration j has size k < ki taken from the top jki items, then
either agent i has taken the bag or another agent has taken a smaller portion of
the original Bj . In this case there are two possibilities:
If Bj has less than ki items of the top jki items in it then by the conditional
of updatebag() in line 3, the bag must still be at the bottom k items in the
range. Thus it will again be true that the last ki items of Topjki(M) will be
removed to make Top(j−1)ki(M \ Bj), and we have shown in Case 1 that this
will result in vi(Top

(j−1)ki(M \Bj)) ≥ j − 1.
In any other case, Bj has exactly ki items of the top jki items in it. We know
that Bj is valued at most 1 by agent i, so it must be true that the value of the
k items taken and the ki − k items in the top jki items that were in Bj , but
were not taken, must be less than 1. In this case, the ki − k items in the jki
range cannot be worse than the least valuable ki − k items in that range. Since
Top(j−1)ki(M \Bj)) will be the same as Topjki(M) only missing the k items in
Bj and the ki − k least valuable items in the jki range, this removed value will
be less or equal to the value that agent i had for Bj , which was less than 1. Thus
since less than 1 value is removed, it is true that vi(Top

(j−1)ki(M \Bj)) ≥ j−1.
To prove that (ii) holds, we can simply observe that the algorithm consists of one
for loop which iterates exactly n times, and inside it a while loop that iterates
at most ∥M∥ times, since there are at most ∥M∥ items that can be swapped or
added. Thus, the algorithm terminates in O(mn) time.

5 Preliminaries for Chores

We can extend the definition of APS to chores by interpreting the price vector
as rewards that agents earn for completing chores. In the case of goods, the
entitlement of an agent was interpreted as their budget. Here, we interpret
the entitlement as the amount of rewards the agent in required to earn. Let
R = {(r1, r2, . . . rm) | rj ≥ 0 ∀j ∈ M,

∑
j∈M rj = 1} be the set of feasible

rewards vectors. The AnyPrice share for chores can be defined as follows.

10

Definition 5.1 (AnyPrice Share for Chores). The AnyPrice Share (APS) value
of an agent i with entitlement bi, denoted as APSi(bi) is defined as following

APSi := max
(r1,r2,...rm)∈R

min
S⊆M

di(S) |
∑
j∈S

rj ≥ bi


Cardinality constraints modeled the ”diminishing returns” the agents expe-

rienced as they received more items as they received more goods. However, in
the case of chores, an additional chore is more burdensome to an agent if they
already have a lot of chores to do. To model this situation, each agent’s car-
dinality constraint lower bounds the number of chores they receive. Note that
when such cardinality constraints are imposed |M | ≥

∑
i∈N ki to ensure at least

one feasible allocation exists.

Definition 5.2 (AnyPrice Share Under Heterogeneous Cardinality Constraints).
The APS value of an agent i with entitlement bi and cardinality constraint ki
is defined as

APSi := max
(r1,r2,...rm)∈R

min
S⊆M

di(S) |
∑
j∈S

rj ≥ bi, |S| ≥ ki


While the notion of APS is defined for arbitrary entitlements, in the following

sections, we only consider the setting in which all agents have equal entitlements
(i.e. bi =

1
n) since there are several nice properties when we restrict to this case.

We prove the properties pertinent to our algorithms in the remainder of this
section.

Similar to the goods case, the valuations functions of the agents can be
scaled so that di(M) = n for all any agent i and we can reduce an arbitrary
instance to an ordered instance. Hence, we assume without loss of generality
that the chores are ordered from highest disutility to lowest, di(j1) ≥ di(j2) ∀i ∈
N, ∀j1, j2 ∈M such that j1 < j2.

Lemma 5.1. For any agent i, the APS value of the agent is at least their
proportional share.

APSi ≥
1

n
di(M)

Proof. Consider the reward vector defined as follows rj =
dij

di(M)
. Clearly, this

reward vector is feasible. For any S ⊆ M that satisfies the reward constraint,∑
j∈S

rj =
∑
j∈S

dij
di(M)

≥ 1

n
. Hence, di(S) ≥

1

n
di(M).

Thus, minS⊆M

{
di(S) |

∑
j∈S rj ≥ bi

}
≥ 1

n
di(M). Since APS takes the max-

imum over all reward vectors, the APS value of agent i must be at least the
proportional share.

11

Note that 5.1 and di(M) = n imply that APSi ≥ 1 for all agents i ∈ N .

Lemma 5.2. The APS value of any agent i ∈ N is greater than the disutility
of any single chore j ∈M

APSi ≥ di(j) ∀i ∈ N, j ∈M

Proof. We set the reward for chore j to 1 and 0 for any other chore. To satisfy
the reward constraint, the agent must have chore j in their APS bundle. Hence,
APSi ≥ di(j).

Lemma 5.3. Let Sl = {ln−l+1, ln−l . . . ln+1} for any l such that ln+1 ≤ |M |

APSi ≥ di(Sl)

Proof. We assign a reward of 1
ln+1 to the chores 1, 2, . . . ln+1 and assign a reward

of 0 to the rest. Any bundle that satisfies the reward constraint must contain
at least l + 1 chores. Since Sl contains the l + 1 chores with the least disutility
and non-zero reward, all bundles satisfying the reward constraint must have a
higher disutility than Sl. Hence, the APS value for agent i must be greater than
the disutility of Sl

As a direct consequence of 5.2 and 5.3, we have that APSi ≥ di(1) ≥

di(2) · · · ≥ di(n) and APSi ≥ di(n) + di(n + 1) ≥ 2di(n + 1). Hence,
APSi
2
≥

di(n+ 1) ≥ di(n+ 2) · · · ≥ di(m).
Note that all proofs presented in this section are also valid for the APS under

heterogeneous cardinality constraints.

6 2-APS for Chores Under Heterogeneous Car-
dinality Constraints

Using the properties of APS proved in the previous section, we present a simple
round-robin-style algorithm that ensures that every agent receives at most twice
their APS value. We allocate the chores to agents in rounds and in each round,
every agent must pick their worst chore. We assume that |M | ≥ nkmax where
kmax = maxi∈N ki, which proves sufficient to ensure that cardinality constraints
of all agents are satisfied.

Theorem 6.1. Algorithm 2 returns a 2-APS allocation under heterogeneous
cardinality constraints

Proof. Since we assume that |M | ≥ nkmax, there are at least kmax rounds
of allocation. Every agent receives at least kmax chores and their cardinality
constraint is satisfied. It remains to show that each agent values their bundle
at most twice their APS value.

Consider A1 = {1, n + 1, . . . (⌊mn ⌋ − 1)n + 1} and An = {n, 2n, . . . ⌊mn ⌋n}.
Since every agent picks their worst available chore and agent n has to pick first in

12

Algorithm 2 2-APS Under Heterogeneous Cardinalities

Input: Scaled, Ordered Instance with bi =
1
n

1: (A1, A2, . . . An)← (∅, ∅ . . . ∅)
2: while M ̸= ∅ do
3: for i = 1 to n do
4: Let c = argmaxj∈M di(j)
5: Ai ← Ai ∪ {c}
6: M ←M \ {c}
7: if M = ∅ then
8: break
9: end if

10: end for
11: end while

every round, An contains the best chore (i.e. the chore with the lowest disutility)
from every round. Thus, An is the best bundle amongst A1, A2 . . . An for all
agents. By similar reasoning, A1 is the worst. Since A1, A2, . . . An partition
M , for any agent i, ndi(An) ≤ di(A1 ∪ A2 · · · ∪ An) = di(M) = n. Hence,
di(An) ≤ 1. Since,

di(n+ 1) ≤ di(n),

di(2n+ 1) ≤ di(2n),

...

di(⌊
m

n
⌋ − 1)n+ 1) ≤ di((⌊

m

n
⌋ − 1)n)

implies di(A1 \ {1}) ≤ di(An). Therefore,

di(Ai) ≤ di(An ∪ {1})
≤ 1 + APSi

≤ 2APSi .

Hence, each agent values the bundle received by them at most 2APSi.

13

